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Abstract

Non-point source pollution occurs when pollution is not observable at the individ-
ual level by the regulator. Traditional tools like Pigouvian taxes are not applicable
here but a tax can be applied at the group level based on joint pollution production.
Such policies are referred to as ambient taxes and they are a promising alternative to
ameliorate the problem of non-point source pollution. Ambient taxes can induce pol-
luters to collectively meet the pollution standard at least cost under certain settings.
But in general, it may achieve the regulator’s pollution target at higher than least cost
if not at highest cost. This result is due to the presence of free-riding incentives. I
show in this paper the conditions in which uncertainty about firm types may lead to
incorrectly setting the uniform ambient tax rate which then creates the potential for
free-riding. I also compare the Nash and Sub-game Perfect Nash equilibria and analyze
the potential welfare gains of adding more water quality monitoring points. I find that
expanding the network of water monitors in such a setting does not always reduce free
riding potential and, in some cases, may increase it.



Introduction

Much of the environmental economics literature focuses on policies that are based on ob-

servable individual emissions such as Pigouvian taxes, tradable permits, and even Coasian

bargaining mechanisms. However, there is an entire class of pollution problems that render

individual emissions monitoring infeasible or prohibitively costly due to the sources of pollu-

tion being diffuse and/or the emissions transfer function being stochastic. Such occurrences

are referred to as non-point source (NPS) pollution.

In the U.S., NPS pollution problems represent the last major hurdle to achieving water qual-

ity goals with agricultural runoff as the main source of such pollution (U.S. Environmental

Protection Agency, 2016). Due to the unobservable nature of NPS pollution, traditional

emissions-based policies cannot be applied. Fortunately, there are many alternatives in the

policy toolbox from which to choose. The focus of this paper is on ambient taxes.

Basing policies on observable ambient quality can overcome many of the issues seen in other

alternatives. First, it gives incentives to abate and it is flexible in regards to the method

of abatement, unlike input taxes. Second, ambient-based policies are tied to observable

pollution rather than estimates of it, like the emission proxies, making it more parsimo-

nious and accurate. However, ambient-based policies have their own set of problems as well.

One important issue is the potential for free-riding to occur since ambient-based policies

are group-based incentives. The research goals in this paper are to (1) examine under what

conditions free-riding can occur under both NE and SPNE when an ambient tax is imposed,
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and (2) does adding more monitoring points reduce the potential for free-riding?

Segerson (1988) and Meran and Schwalbe (1987) were the first to suggest ambient-based

policies to correct for NPS pollution and showed how an ambient tax/subsidy can induce

polluters to collectively choose the socially optimal level of ambient concentration as a Nash

Equilibrium. However, their proposed solutions involve charging firm specific tax rates which

require knowledge of firms’ abatement cost functions thus placing an informationally expen-

sive burden on the regulator. If knowledge about the distribution of types is available, it

is possible to achieve first best abatement allocations with a uniform tax rate even with

heterogeneous firms (Segerson and Wu, 2006). Without such information readily available,

the regulator has two options. First, a damage-based tax can be implemented according

to Hansen (1998) which only requires knowledge about the damage function at the socially

optimal ambient level; however, even this can be argued as too informationally demanding.

Alternatively, Segerson and Wu (2006) develop a regulatory threat mechanism whereby the

regulator threatens the NPS polluters with an ambient tax if the polluters do not achieve

the standard voluntarily. The ambient tax, if implemented, requires the regulator to invest

resources to learn about the firm types in order to optimally set the tax rate. Unfortu-

nately, this mechanism requires that the regulator’s threat be credible so it is not a perfect

workaround.

Any informational requirement about the damage function or distribution of firm types is,

in practice, still a significant hindrance for the regulator even in a point-source pollution

setting. This fact has motivated the environmental economics literature to shift its focus
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towards the second best policy solution which aims to achieve a set pollution target at least

cost. The second best arises because of uncertainty about the optimal pollution target.

With NPS pollution however, an ambient tax is not guaranteed to achieve this second best

target without the information requirements mentioned earlier. As noted in (Kotchen and

Segerson, 2020), it is possible that an ambient tax can achieve its pollution target but with

some degree of free-riding (i.e., some polluters discharge more than socially optimal). Thus,

in the presence of free-riding, ambient taxes produce an outcome closer to a third best situ-

ation where the second best target is achieved but at greater than least cost. In this paper,

I characterize the conditions under which free-riding can occur while achieving the pollution

target and examine how expanding the monitoring network affects the degree of free-riding.

I find that when the uniform tax rate is set too high relative to the pollution target (i.e.,

ambient standard), then the possibility of achieving compliance at greater than least cost

arises. This occurs because the collective tax gives rise to a minimum profitable pollution

level (X̃i) for each polluter. This level of discharge is possibly heterogeneous and marks

the lowest level of discharge that a firm is willing to commit towards avoiding the known

tax penalty that would result from non-compliance. Intuitively, if a firm is pivotal in the

determination of compliance, then they would not be willing to pollute below X̃i to avoid

the group tax penalty and would instead prefer to pollute at X̃i and pay the tax rather than

go below X̃i to avoid the tax. Therefore, X̃i is a decreasing function of the ambient tax rate.

This implies that there is a unique value for t such that the minimum profitable pollution
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level equals the least cost level for each polluter. Above this unique point for t, the min-

imum profitable pollution X̃i is less than the least cost level X∗
i . When that happens, a

multiplicity of Nash Equilibria (NEs) arises1. These NEs all achieve compliance (henceforth

referred to as compliance NEs) but creates a situation where some polluters are polluting

less than the least cost amount so that others can pollute more than the least cost level.

Those who pollute above their least cost level are henceforth referred to as free-riders. This

is the fundamental moral hazard problem prevalent in team games that lead to free-riding

(Holmstrom, 1982).

The other main contribution of this paper is to examine the impact from adding more mon-

itoring points on the degree of free-riding. The classic model from Segerson (1988) assumes

that individual discharge monitoring is prohibitively costly but that group level monitoring

is feasible. For example, having one monitoring point downstream of all known polluters.

When one such monitoring point is feasible then it is natural to ask how many more mon-

itors are feasible? The concept of feasibility here is determined by an implicit cost-benefit

analysis. If the regulated body of water were a lake, such additional monitoring points would

do little to change outcomes and thereby providing no real benefits. However, under a river

network, adding more monitoring points could effectively partition the initial group of pol-

luters into smaller groups, thereby creating less free-riding potential and possibly translating

to real welfare benefits. Allowing the number of monitors to be greater than one is the more

general model with the classic Segerson (1988) model as one special case in which the net-

1Least cost pollution level is the pollution level that a planner would choose (for the individual polluter)
that results from a second best optimization problem.
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work has only one monitoring point at the river’s bottom. The other special case is when

the number of monitors m equals the number of polluters n in which case the NPS pollution

effectively becomes point source.

Such an analysis requires the examination of a particular outcome that can be examined

as m increases. However, the presence of free-riding incentives only exists when there are

a multiplicity of NEs. Thus, the Subgame Perfect Nash Equilibrium (SPNE) is used as an

alternative concept where the player furthest upstream is the first mover and the player fur-

thest downstream is the last mover. Using the SPNE has many advantages to the research

goal. First, the SPNE is a refinement of the NE so it is itself an NE and remains unique

regardless of the ambient tax rate. Secondly, the SPNE produces the highest cost compliance

scenario when firms are homogeneous. Thus, even if there is no way to know which NE will

occur, it is at least possible to examine how the highest cost NE would change withm. In this

way, the SPNE outcome can be viewed as a measure of the maximum potential for free-riding.

Lastly, many water quality goals encompass rivers/streams which have a flow direction dic-

tated by gravity allowing the possibility of differential “power” among polluters based on

their river location. This idea has been studied in the literature on irrigation access as a

public good (Bell et al., 2015; D’exelle and Lecoutere, 2012) and has recently been studied

in a NPS pollution context (Zia et al., 2020; Miao et al., 2016). Both papers use experi-

mental methods to find that as monitoring locations expand and frequency of measurement

increases, upstream players’ behavior is more affected relative to downstream players. How-

ever, in those models, the differential strategies between players located more upstream and
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those more downstream arises because of the differences in nutrient transport, specifically

the process of nitrification. In this paper, such differences are ignored because the focus of

this paper is on free-riding incentives which exist even without heterogeneity.

There are many other issues with ambient policies which are not addressed in this paper.

For instance, efficacy of ambient policies requires firms to understand that their actions have

effects on measurable ambient quality. This is typically only an issue when the number of

polluters is large and thus ambient policies have much greater appeal in settings with few

polluters. However, settings with few polluters could exacerbate the collusion issue that can

arise under ambient policies (Cabe and Herriges, 1992). Collusion occurs when polluters

have the ability to communicate with each other and find it collectively more profitable to

over abate at the aggregate level. This paper abstracts away from the collusion issue by

focusing on a pure ambient tax which gives no subsidies for over abatement. Combining

this with the assumption of no stochasticity in the ambient quality buys us a model where

there is no incentive to collude and over abate. This result is confirmed in the experimental

literature on ambient policies for NPS pollution (Cochard, Willinger and Xepapadeas, 2005).

I begin with setting up the model for the social planner that tries to achieve an ambient goal

at least cost. From this, a least cost policy is derived and used to benchmark against the

other pollution outcomes discussed later. I then derive best response functions of firms in

both the simultaneous and sequential game settings treating the policy as given and fixed.

Then equilibria is discussed in both game types (simultaneous and sequential) and policy

types (perfect tax and strict tax) along with the resulting welfare implications. Afterwards,
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I describe and model the potential for free-riding and examine whether location additional

monitors matter and how increasing the number of monitors might impact the potential for

free-riding.

Model Setup

Consider n known polluters (firms) whose discharge all go to the same monitoring point.

Firms differ in location and are all situated along a simple linear river network and are

allowed to be heterogeneous. I allow firms to freely choose their discharge level (Xi) and I

abstract away from both output decisions and the consumer market. For now, I assume the

regulator can only feasibly monitor ambient concentrations directly downstream of the last

polluter, firm n. Later, I will allow the number of monitors to increase above one. Figure 4

depicts a two player example of the game tree when the game is assumed to be sequential.

The regulator observes ambient quality X, takes the ambient standard X as given and

chooses a value for the uniform tax rate t that will induce a compliance outcome. Each firm

faces an ambient tax given by (1)

Ti(X) =


0 if X ≤ X

t(X −X) if X > X

(1)
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and firm level payoffs are given by (2)

Π(Xi, X, θi) =


π(Xi, θi) if X ≤ X

π(Xi, θi)− t(X −X) if X > X

(2)

where π() is the farm profit for a chosen individual pollution level without tax burden

considerations. The model setup will be general enough to allow for heterogeneity but I will

invoke the homogeneity assumption to derive many of the results in this paper. Firm types

are given by θi, the slope of the marginal profit of pollution curve (isomorphic to marginal

abatement cost curve) and πi(Xi) is short hand for π(Xi, θi). A higher value for θ is assumed

to have a positive effect on the marginal profit of pollution ( ∂2πi

∂Xi∂θi
≥ 0) and thus leading to

a (weakly) higher level for Xbau
i , the business as usual level of discharge for each firm. The

ambient pollution is assumed to be the sum of discharges across all polluters X =
n∑

j=1

Xj.

Lastly, πi(·) is assumed to be an upside down parabola where π′
i(X

bau
i ) = 0 and π(0) = 0.

The Social Planner

The goal of this section is to pin down the optimal uniform tax rate. The planner wants

to choose pollution allocations (X1, . . . , Xn) so that ambient quality reaches the standard

(X ≤ X) at least cost. The cost structure is subsumed in the farm profit function so that

the planner’s problem is framed as in (3).

max
{Xi}ni=1

n∑
i=1

π(Xi, θi) s.t. X ≤ X (3)

From equation (3), the least cost pollution level for individual i, denoted as X∗
i , is pinned
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down by (4).

π′(X∗
i , θi)− λ∗(θ1, . . . , θn, X) ≤ 0 for i = 1, . . . , n (4)

Thus the socially optimal pollution allocation is such that everyone pollutes up to the point

where their marginal profit from pollution equals the shadow price of pollution given by

the lagrange multiplier, λ∗(θ, X). The least cost pollution allocation is then given by

(X∗
1 , . . . , X

∗
n) and this achieves compliance exactly (

∑
X∗

i = X).

Firm Problem

Polluting firms face the following optimization problem

max
Xi

Π(Xi, X−i, θi) (5)

where the objective function in (5) is given by (2). And since the tax schedule from (1) is

piecewise, solving (5) requires analyzing the optimum on both sides of the kink (see Appendix

for full solution).

Proposition 0.1. For each player i, there exists a minimum profitable pollution level (de-

noted as X̃i) such that player i would never find it profitable to pollute below X̃i to avoid the

tax penalty given by t(X−i + X̃i −X) where X−i denotes the pollution attributable to all but

firm i. The minimum profitable pollution level is indirectly given by

π′(X̃i, θi) = t

Therefore we have X̃i = X̃i(t) and X̃ ′
i(t) ≤ 0.
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See proof on page 30.

Nash Equilibrium

Here, I present the setup for the simultaneous game by deriving best response functions and

the Nash Equilibrium. From Proposition 0.1, we know that no player would choose pollution

below X̃i no matter what. Furthermore, all players would like to choose Xbau
i if they could

do so without incurring a penalty. Thus for all players, their best response function given

the pollution level of others (denoted as X−i) is given by (6).

XBR
i =



Xbau
i if X−i ≤ X −Xbau

i

X −X−i if X −Xbau
i ≤ X−i ≤ X − X̃i

X̃i if X−i ≥ X − X̃i

(6)

Equation (6) is depicted graphically in Figure 1. If player i knows that they can pollute

business as usual without incurring the tax penalty then they will surely do so. However,

if they cannot do so without being penalized, then they will cut back on pollution levels

to avoid the penalty but only up to a certain point. All firms would rather contribute to-

wards noncompliance rather than pollute below their minimum profitable pollution levels,

X̃i. This result relies on the fact that polluters know exactly what their tax burden would

be in the case of noncompliance and if uncertainty is allowed, firms will then need to know

some moments of the distribution for the penalty.

From proposition 0.1 and equation (4), we see that if the regulator sets the uniform tax
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Figure 1: Best Response Function for Pollution

Xi

X−i

X̃i

Xbau
i

X −Xbau
i X − X̃i

Player i’s BR Fxn

rate so that it equals the lagrange multiplier λ∗, then all firms would have their minimum

profitable pollution levels be equal to their least cost pollution levels and thus would result

in a unique Nash Equilibrium where ambient quality target is met exactly and at least cost

(Segerson and Wu, 2006).

However, assuming that the regulator knows the full distribution of θ is not likely to hold in

reality. Though it could be the case that the regulator can incur a cost to learn θ, this cost

could easily be prohibitively high. When θ is unknown, it invites the possibility of having a

value t ̸= λ∗ while still maintaining compliance; this occurs if t > λ∗.
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The Effects of t on Nash Equilibria

Here we look at the implications of various levels of t that would induce a compliance NE.

From equation (4) and proposition 0.1, we know that when t < λ∗, then X̃i > X∗
i for all i

since we assume π′′() ≤ 0. This inevitably leads to noncompliance because no one is willing

to pollute below their minimum profitable pollution levels which happens to be higher than

the least cost pollution level for each i.

When t = λ∗, each player has their minimum profitable pollution level exactly equal to their

least cost pollution level. When this happens, the only unique Nash Equilibrium pollution

allocation occurs at the point where each firm pollutes exactly X̃i as depicted in Figure 2. I

refer to this value as the “perfectly” set tax rate. This choice of nomenclature captures the

idea that when t is set equal to λ∗, players’ best response functions intersect at exactly one

point in the n-dimensional space. At that point, compliance is met perfectly and at least

cost to polluters.

The novel result of this paper focuses attention on the case when t is set “too strictly” so

that t > λ∗. This is shown in Figure 3 and when this occurs, all players’ minimum profitable

pollution level now lies below their least cost levels (X̃i < X∗
i ). In such a setting, all firms

are willing to pollute less than X∗
i but no less than X̃i to avoid a tax penalty. Therefore,

some firms can get away with polluting above X∗
i and free-ride off of those who are polluting

less than what is optimal. This result is a consequence of having a multiplicity of NEs where

any allocation outside of X∗ = (X∗
1 , . . . , X

∗
n) is an inefficient allocation even though all NE’s
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Figure 2: Two-Player Best Response Functions (perfectly set t)

X2

X1

X −Xbau
2

X̃2

X −Xbau
1

X̃1

Xbau
2

Xbau
1

P1’s BR fxn

P2’s BR fxn
(X∗

1 , X
∗
2 )

achieve compliance. This is summarized in theorem 0.2 and the intuition for the result is

very simple.

When t > λ∗, it creates a gap between X̃i and X∗
i . This creates a potential surplus of

implied pollution quotas available for some to pollute beyondX∗
i . The total potential surplus

available to a firm i is given by (7). When homogeneity is assumed, equation (7) becomes

X − nX̃.

n∑
j=1
j ̸=i

(
X∗

j − X̃j

)
(7)
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Theorem 0.2. Let λ∗ be the shadow price of pollution which is defined as in (4). When

t < λ∗, then the NE is non-compliance such that

X =
n∑

i=1

X̃i(t) > X

But when t = λ∗, compliance is reached exactly (i.e.,
n∑

i=1

X̃i(t) = X). Lastly, when t > λ∗ we

have
n∑

i=1

X̃i(t) < X

and the allocation (X̃1, . . . , X̃n) is no longer an NE. Instead, the NE is characterized by

(Xne
1 , . . . , Xne

n ) :
n∑

i=1

Xne
i = X

with Xne
i ∈

[
X̃i, X

bau
i

]
for all i. Therefore, the ability to free ride exists to the extent that

t > λ∗.

See proof on page 32.

Without introducing any equilibrium selection concepts, there is no way to know which NE

will be selected when t > λ∗. Worse yet, in the two player example with homogeneous types,

the allocations (X1, X2) = (X̃1, X−X̃1) and (X1, X2) = (X−X̃2, X̃2) produces a compliance

outcome at the highest cost. It turns out that under homogeneity and sequential play, then

the Sub-game Perfect Nash Equilibrium will produce this “worst case scenario”.
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Figure 3: Two-Player Best Response Functions (too strict of t)

X2

X1

X̃2

X −Xbau
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1

X̃1

X − X̃1

Xbau
2

Xbau
1

P1’s BR fxn
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∗
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SPNE as “Worst Case”

It is helpful for expositional purposes to use the SPNE concept to characterize the “worst

case scenario”, that is, when compliance is reached at highest cost. Even though it may not

be innocuous to assume that downstream players can perfectly observe the quality of water

that reaches their own stretch, such an assumption allows us to examine the SPNE for other

purposes. The extensive form game tree is depicted in Figure 4 assuming only two players.

Player 1 is the first mover while player n is the last. Following standard procedure, we utilize

backward induction and first pin down the last player’s strategy.

The nth player’s strategy is exactly described by equation (6) since they are the last mover
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Figure 4: 2 Player Example Model

P1

choose discharge level X1

P2
X1

observes X1
choose discharge X2

X2

X1

Monitoring Pt
(M)

regulator compares
X = X1 +X2

with X

in this game. Player n − 1’s problem will slightly diverge from equation (6). Player n − 1

still has the same value for their minimum profitable pollution level as in the simultaneous

game. The difference here is that their compliance goal is not to stay under X since they

are not the last person in the river. If player n− 1’s goal is to reach compliance, then they

must keep the ambient pollution discharged by everyone upstream of n (denoted as X↑(n))

to be weakly less than X − X̃n because if player n− 1 pollutes too much so that X↑(n) is too

high, then player n will still choose X̃n and thus push the group to be out of compliance.

The best response function for player n− 1 is then given by (8).

XBR
n−1 =



Xbau
n−1 if X↑(n−1) ≤ X −Xbau

n−1 − X̃n

X − X̃n −X↑(n−1) if X −Xbau
n−1 − X̃n ≤ X↑(n−1) ≤ X − X̃n − X̃n−1

X̃n−1 if X↑(n−1) ≥ X − X̃n − X̃n−1

(8)

The term X↑(n−1) denotes the pollution amount attributable to polluters upstream of n− 1

and is not to be confused with X−(n−1) which is the pollution amount attributable to all
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polluters excluding n− 1. Equation (8) essentially translates equation (6) to the sequential

context so that now player n− 1 takes only upstream pollution (X↑(n−1)) as given and their

compliance goal explicitly takes the next player’s strategy into account.

Player n−1 knows that player n will never choose to pollute below their minimum profitable

pollution level (X̃n). Therefore, if player n− 1 wants to achieve a compliance outcome, she

must ensure that the water received by n does not exceed X − X̃n. However, if the water

received by n−1 is too polluted so that n−1 must pollute below her own minimum profitable

pollution level to achieve the compliance goal, then she will surely not do so resulting in

overall non-compliance. Equation (9) extends the best response function to all players j

where j is upstream of n (j < n). For (9) to apply to Player 1, simply set X↑(1) = 0.

XBR
j =



Xbau
j if X↑(j) ≤ X −Xbau

j −
n∑

k=j+1

X̃k

X −X↑(j) −
n∑

k=j+1

X̃k if X −Xbau
j −

n∑
k=j+1

X̃k ≤ X↑(j) ≤ X − X̃j −
n∑

k=j+1

X̃k

X̃j if X↑(j) ≥ X − X̃j −
n∑

k=j+1

X̃k

(9)

Welfare in Equilibrium

There is a well known result that the SPNE is a subset of the set of NE’s and so when t is set

perfectly, there is a unique NE and is thus identical to the SPNE. When t is set too strictly

(high), however, the SPNE results in one of the extremes from the set of NE’s. Take Figure

3 as an example. Assuming that Player 1 is upstream of 2, the SPNE would produce the
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point (X − X̃2, X̃2) as the pollution allocation2. This is because Player 1 can exert its first

mover advantage over Player 2 by producing more pollution and forcing Player 2 to pick up

the slack. Player 2 is happy to do this because of Proposition 0.1. This intuition is captured

in Corollary 0.3 and Theorem 0.4.

Corollary 0.3. If all firms are identical in all but location, then the SPNE resulting from

the policy (t,X) where t > λ∗(θ, X) produces a pollution allocation that is non-increasing

downstream. That is

Xspne
h ≥ Xspne

ℓ

where h < ℓ (so that h is upstream of ℓ).

See proof on page 32.

Theorem 0.4. Suppose all firms are homogeneous except location and that t > λ∗. Define

k = ⌊k̃⌋ > 0 where k̃ = max{B} and B =
{
k ∈ R+

0 : kXbau + (n− k)X̃ = X
}
. Then the

SPNE would produce the following result

(Xspne
1 , . . . , Xspne

k , . . . , Xspne
n ) = (Xbau, . . . , Xbau︸ ︷︷ ︸

k

, XR, X̃, . . . , X̃︸ ︷︷ ︸
n−k−1

)

and compliance is met exactly so that

X = kXbau + (n− k − 1)X̃ +XR

2Assuming that X − X̃2 < Xbau
1
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where XR ∈
(
X̃,Xbau

)
and k =

⌊
X − nX̃

Xbau − X̃

⌋
.

See proof on page 33. Note that ⌊ ⌋ is the floor function/operator.

Theorem 0.4 simply says the SPNE would be so that the first k players will choose BAU

levels, player k + 1 will pollute some amount between BAU and minimum profitable level

(henceforth referred to as the residual polluter), and the remaining downstream players pol-

lute the minimum profitable pollution level. This formalizes the arguments made in the

previous section and shows that the SPNE does indeed produce the most extreme allocation

possible when t > λ∗.

The result from theorem 0.4 above and theorem 0.5 below implies that the SPNE still achieves

compliance but at the highest possible cost. This result relies heavily on the homogeneous

firm assumption which limits its value somewhat.

Theorem 0.5. The SPNE allocation in Corollary 0.4 produces the lowest welfare possible

among all other compliance NE’s.

See proof on page 33.

When we start to consider the more realistic scenario where firms are heterogeneous, the

welfare consequences of a too strict t value in an SPNE becomes more complicated. In

particular, the SPNE no longer coincides with the “worst case scenario” which is occurs

when the lowest θ types are free-riding off of the highest θ types. In other words, the “worst

case” occurs when those who stand to gain the least from free-riding, free-ride off of those

who stand to gain the most from free-riding.
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Optimal Location of Additional Monitors

The regulatory structure of applying an ambient tax on NPS polluters along a river will

change as m, the number of monitoring points, changes. How that changes may depend

on where those monitors are located. Towards that end, I will invoke the assumption that

firms are homogeneous in all but location and this includes each firm’s marginal damage of

pollution. When an additional monitor is placed upstream of player ℓ + 1, then it would

effectively split the group of n polluters into two groups; the upstream group would have

size ℓ while the downstream group has size n− ℓ.

It is assumed that the regulator only cares about total pollution downstream of player n so

that the resulting two groups are regulated independently. Since homogeneity is assumed

here, the ambient tax rate that is applied to each section are the same. The ambient standard

for each section will depend on where the second monitor is located. The ambient standard

for the upstream section is

Xu =
ℓ

n
X

and the standard for the downstream section is

Xd =
n− ℓ

n
X

so that the sum of the two standards equals the original standard for the case m = 1. It

should be noted that the process of determining the appropriate standard for each section is

extremely simplified here where each section gets a representative share of the total original
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standard. Under homogeneity, this arbitrary process happens to be the optimal choice for

the regulator since X∗
i = X

n
for all i. But when heterogeneity is allowed, this simple process

no longer corresponds to the optimal standard for each section. The corresponding total

profits for both upstream (subscript u) and downstream (subscript d) groups are given in

(10).

Πu = kuπ(X
bau) + (ℓ− ku − 1)π(X̃) + π(XRu)

Πd = kdπ(X
bau) + (ℓ− kd − 1)π(X̃) + π(XRd

)

(10)

The values (kh, XRh
) are defined similarly to (k,XR) from theorem 0.4 but are derived from

Xh for h = {u, d}. Thus welfare is given by (11).

W = Πu +Πd −D(X) (11)

Equations (10) and (11) indicate that the choice in location (ℓ) affects welfare through two

channels: (1) how it affects total number BAU polluters (ku + kd) and how it affects the

amount that the two residual polluters discharge (XRu and XRd
).

Theorem 0.6. Initially let m = 1. Under homogeneity, the welfare maximizing location for

the second monitor is ℓ = n
2
.

See proof on page 34.

Theorem 0.6 suggests that the optimal location for the additional m− 1 monitors would be

so that the entire river is partitioned evenly. Without a formal proof of this, for now I treat
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this as more of a simplifying assumption.

Optimal Number of Monitors

Now that it is established where the additional m− 1 monitors will be located, the question

that remains is how shouldm be determined so that the potential for free-riding is minimized?

There will be m sections that are partitioned along the river (the number of sections equals

the number of monitors) and homogeneity means that each section is regulated the same and

thus behaves the same (has the same pollution outcome). The welfare under an m monitor

regime is given by equation (12).

Wm = m
[
kmπ(X

bau) + (nm − km − 1)π(X̃) + π(XRm)
]
−D(X) (12)

The bracketed term is the profits to each section so that (km, nm, XRm) are respectively, the

number of BAU polluters, number of total polluters, and the discharge level of the residual

polluter for each identical section or group. By construction, nm = n
m

and it is assumed that

it is an integer. Further, the number of BAU polluters for each section is given by (13).

km =
⌊
k̃m

⌋

k̃m = max{Bm}

k̃m =
X − nX̃

m(Xbau − X̃)
=

k̃

m

Bm =
{
km ∈ R+

0 : kmX
bau + (nm − km)X̃ = Xm

}

(13)
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The number of BAU polluters per section (weakly) decreases with m but the number of sec-

tions increases with m. This begs the question of whether increasing the number of evenly

space monitors actually affects the potential for free-riding in the manner that is socially

desirable. The potential for free-riding is measured by the sum of all individual differences

between the least cost pollution level and their minimum profitable pollution level. This is

stated in the definition of k from theorem 0.4 when you recognize that the least cost pollution

level for each polluter equals X
n
under homogeneity. Figure 5 depicts the intuition for where

the potential for free-riding comes from in a more general way that allows for heterogeneity.

Figure 5: Free-Riding Potential, m = 1 and Heterogeneity Case

0 n∑
i=1

X̃i
X n∑

i=1

Xbau
i

unused implied quotas

As a starting point, consider the case in which everyone is producing at their minimum prof-

itable levels, X̃i. This is not an NE because there are unused implied pollution quotas left,

i.e.,
n∑

i=1

X̃i < X; specifically, there would be X −
n∑

i=1

X̃i many unused implied quotas. How

many BAU polluters that this unused implied quotas can support depends on the distance

between Xbau
i and X̃i for each i. Therefore, under homogeneity we see that theorem 0.4

defines the maximum BAU polluters for a compliance NE to be k =

⌊
n
(

X
n
−X̃

)
Xbau−X̃

⌋
.

When we allow for m > 1, then the free-riding potential within each section depends on the

distance between Xm and nmX̃. Since Xm is decreasing faster with m than nmX̃m does,
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then the free-riding potential within a section decreases as well.

Figure 6: Free-Riding Potential, m > 1 and Homogeneity Case

0 nmX̃ Xm nmX
bau

unused implied quotas

The total number of BAU polluters for the entire river, denoted as kT
m is given by (14).

At a glance, it is unclear whether total free-riding potential measured by (14) increases

or decreases with m. Certainly when m = n, the potential for free-riding vanishes which

would seem to indicate that the total free-riding potential will decrease with the number of

monitors. However, this is not the case and I show how that works formally below and try

to provide intuition along the way.

kT
m = mkm (14)

Equation (14) implies that

kT
1 =

⌊
X1 − n1X̃

Xbau − X̃

⌋
(15)

where X = X1 and n = n1. Intuitively, when m = 1 the resulting number of total BAU

polluters is at its maximum (kT
1 = maxm{km}) and when m = n then that number is now

at its minimum (kT
n = minm{km}). But theorem 0.7 shows that the function kT

m does not in

generaly change in a monotone fashion. Instead, there is a condition for which kT
m actually

increases with m, though never above kT
1 as stated in corollary 0.8.

Theorem 0.7. Let km and kT
m be the maximum number of BAU polluters within a section
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and the total maximum BAU polluters along the river, respectively. Then for m1 < m2 we

have that kT
m1

> kT
m2

if and only if equation (16) holds.

k1 − k2
k1

>
m2 −m1

m2

(16)

See proof on page 36.

Corollary 0.8. Increasing m may increase kT
m but never more than kT

1 . In other words, a

maximum (not necessarily unique) for kT
m is kT

1 .

See proof on page 37.

In general, equation (16) is not guaranteed to hold which means that the total maximum

number of BAU polluters along the entire river, is not guaranteed to decrease with increases

in the number of evenly spaced monitors. Its important to clarify that we are referring to

the maximum possible number of BAU polluters that could result from a simultaneous game

since there are so many possible NEs when t > λ∗. Under a more sequential type game,

which is more plausible in a river setting as opposed to a lake, the result from theorem 0.7

is a proper prediction of a behavioral outcome.

Intuitively, theorem 0.7 says that an increase in monitors from m1 to m2 would decrease

the potential for free-riding for the entire river if and only if the percent decrease in the

potential for free-riding within a section, is greater than the percent increase in monitors

(i.e., number of sections) relative to the new value, m2. Restating this graphically, turn to

figure 6. The result from theorem 0.7 means that the distance between the values Xm and

nmX̃ must decrease faster than m is increasing in order for an increase in m to decrease the

25



total potential to free-ride3.

Discussion

The results suggest that when the regulator can calibrate t perfectly for X, then there is

no difference in the NE and SPNE results. However, if the regulator overshoots λ∗ even

slightly, then the NE and SPNE diverge. For the case in which polluters are homogeneous

in all but location, the SPNE will always produce the worst compliance outcome in terms

of welfare. This is because if t is set too strict (i.e., t > λ∗), then firms’ minimum profitable

pollution level (X̃i) is lower than the individual least cost discharge, X∗
i . This gap gives rise

to the potential for free-riding leading to a wide range of pollution allocations that can both

achieve compliance exactly and is individually rational. But when t = λ∗, firms’ minimum

profitable pollution level is exactly equal to the socially optimal individual discharge. This

situation leads to no potential for free-riding and thus a unique NE would result.

Under homogeneity, the SPNE outcome being the highest cost compliance NE serves as a

useful measure for the potential for free-riding under a simultaneous game. The main con-

tribution of this shows that when the potential for free-riding exists, additional monitoring

points may not necessarily decrease that potential. The degree to which additional monitors

decreases that potential, depends on the extent in which the relative decrease in the poten-

tial for free-riding within each section is higher than the relative increase in the number of

sections.

3To see that the distance between Xm and nmX̃ does decrease with m, simply take the derivative of both
values with respect to m and compare.
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Advances in water quality monitory technology has made this line of questioning more rel-

evant than ever, reducing the cost of implementing more complex monitoring networks.

Understanding the benefits of additional monitoring locations is thus a crucial component

analysis in determining the benefits of such an investment. The policy implication of this

paper’s results is that if a regulator seeks to achieve a NPS pollution goal in a river-like sys-

tem through the implementation of an ambient tax, they can do so but at an unknown cost

a priori. The regulator can increase the number of monitoring points, but doing so does not

guarantee that the resulting outcome is closer to the least-cost outcome. However, additional

monitoring locations is more likely to achieve an outcome closer to the least-cost outcome

when the level increase in the number of monitors is large as is apparent from equation 16.

Lastly, our theoretical results are consistent with the laboratory results from Miao et al.

(2016) and Zia et al. (2020) though for different reasons. Those studies sought to examine the

effects on polluter behavior under an ambient tax of changes in the information structure such

as additional monitoring points or increase in monitoring frequency. This paper addresses the

former directly providing a proper theoretical framework for that line of analysis. However,

those two papers only went as far as one additional monitoring point which limits the effect

on behavior somewhat.
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Appendix: Proofs

Proof of Proposition 0.1. We can rewrite 5 as

max
Xc

i ,X
d
i

{
Πc

i ,Π
d
i

}
(17)

where

Xc
i = arg max

Xi

πi(Xi) s.t X ≤ X (14.1)

Πc
i = πi(X

c
i ) (14.2)

Xd
i = arg max

Xi

πi(Xi)− t(X −X) s.t X > X (14.3)

Πd
i = πi(X

d
i )− t(Xd

i +X−i −X) (14.4)

X̃i : π
′
i(X̃i) = t (14.5)

Here, X−i denotes the pollution level of all other players but i. The strategy of player i can

be broken down into two types, a comply strategy and a don’t comply strategy. The comply

strategy and associated payoffs are represented with a superscript c as in (14.1)-(14.2). The

don’t comply strategy and corresponding payoff is represented with a d as in (14.3)-(14.4).

Recognize that if X̃i+X−i ≤ X then Xc
i ≥ X̃i by definition. We want to show that Πc

i ≥ Πd
i

if and only if X̃i +X−i ≤ X. I prove this below.
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Suppose that Πc
i ≥ Πd

i .

⇐⇒ π(Xc
i ) ≥ π(Xd

i )− t(X −X)

⇐⇒ t(X −X) ≥ π(Xd
i )− π(Xc

i )

⇐⇒ t(Xd
i −Xc

i ) ≥ π(Xd
i )− π(Xc

i ) (add/subtract by t(Xc
i ) to LHS)

⇐⇒ t ≥ π(Xd
i )− π(Xc

i )

Xd
i −Xc

i

Note that there are only two possibilities, either the ”don’t comply” (DC) constraint binds

(X̃i + X−i ≤ X) or it doesn’t (X̃i + X−i > X). When the DC constraint binds, then we

have X̃i ≤ Xc
i < Xd

i . When it fails to bind, we have Xc
i < Xd

i = X̃i.

Since we know that t = π′(X̃i), then if t ≥ π(Xd
i )− π(Xc

i )

Xd
i −Xc

i

holds, it must be the case that the

DC constraint binds since both Xc
i and Xd

i are to the right of X̃i. When the DC constraint

fails to bind, (i.e., Xd
i = X̃i and Xc

i < X̃i), then the slope condition will fail to hold also.

Thus

Πc
i ≥ Πd

i ⇐⇒ X̃i +X−i ≤ X (DC constraint binds)

Therefore, when X−i is small enough so that firm i can pollute at a minimum of X̃i and still

achieve X then it will do so. However, when X−i is sufficiently large so that when firm i
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chooses X̃i it would not be compliant, then firm i will still choose to pollute X̃i.

Proof of Theorem 0.2. By definition we have

1.
n∑

i=1

X̃i(λ
∗) = X

or equivalently we can state X̃i(λ
∗) = X∗

i

2. X̃i(t) =
(

∂πi(Xi)
∂Xi

)−1

(t)

3. π′
i(Xi) is convex and weakly decreasing over

[
0, Xbau

i

]
By point two and three above, X̃i(t) is also convex and decreasing in t. Therefore, when

t < λ∗ the first point above implies that
n∑

i=1

X̃i > X. It also proves the case for t = λ∗. And

when t > λ∗ we have that X̃i < X∗
i .

Proof of Corollary 0.3. The proof follows directly from Equation (9). For example, take the

first line from the piecewise function and compare this for two different players, h and ℓ

where h is upstream from ℓ. Player h will pollute Xbau if X↑(h) ≤ X −Xbau
h − (n− h)X̃ and

Player ℓ will also pollute Xbau if X↑(ℓ) ≤ X −Xbau
ℓ − (n− ℓ)X̃. Since we have

X↑(ℓ) > X↑(h)

and

X −Xbau
ℓ − (n− ℓ)X̃ > X −Xbau

h − (n− h)X̃

it is hard to tell which player is more likely to play their BAU levels at the moment. However,
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we can establish that

X↑(ℓ) −X↑(h) > (ℓ− h)X̃

since players in between h and ℓ would, at a minimum, produce X̃. This then allows us

to claim that the condition for h to play their BAU level is more likely to hold than the

condition for ℓ to play their BAU level. A similar process can be done for the remaining

pieces from (9) to fully establish the proof.

Proof of Theorem 0.4. The SPNE pollution allocation follows directly from the definition of

k and equation (8). To see that XR ∈
(
X̃,Xbau

)
, notice that we have

=⇒ k̃Xbau + (n− k̃)X̃ = kXbau + (n− k − 1)X̃ +XR

=⇒ (k̃ − k)Xbau +
(
1−

[
k̃ − k

])
X̃ = XR

=⇒ σXbau + (1− σ)X̃ = XR (where σ ∈ (0, 1))

Proof of Theorem 0.5. The welfare from Proposition 0.5 is given by

W0 = kπ(Xbau)− (n− k − 1)π(X̃) + π(XR)−D(X)

but since all NE’s result in compliance, the damage function will be same when comparing

across different NE’s and there is no tax incurred. Thus, the only relevant comparison is
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done on producer welfare, W p
0 given by

W p
0 = kπ(Xbau)− (n− k − 1)π(X̃) + π(XR)

The only possible reallocation will be one in which a free rider will pollute ε less while a

contributor will pollute ε more. Such a reallocation produces welfare W p
1 where

W p
1 = (k − 1)π(Xbau) + (n− k − 1)π(X̃) + π(Xbau − ε) + π(XR + ε)

Since it would increase welfare marginally more if we give the ε to a polluter at the level of

X̃ over one at XR. Then evaluating W p
0 −W p

1

W p
0 −W p

1 = π(Xbau)− π(Xbau − ε) + π(XR)− π(XR + ε)

= π(Xbau)− π(Xbau − ε)−
[
π(XR + ε)− π(XR)

]

≤ 0 (since π() is concave or π′(x) is decreasing in x for x ≤ Xbau)

Proof of Theorem 0.6. First I show that the choice of ℓ doesn’t change the value ku+kd and

then I show that the choice ℓ =
n

2
maximizes π(XRu) + π(XRd

).
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By definition we have ku + kd = ⌊k̃u⌋+ ⌊k̃d⌋. We can decompose k̃h for h ∈ {u, d} as

k̃h = ⌊k̃h⌋+ bh

where bh ∈ (0, 1). Then we have

⌊k̃u + k̃d⌋ = ⌊k̃u⌋+ ⌊k̃d⌋+ ⌊bu + bd⌋

and since

⌊bu + bd⌋ =


0 if bu + bd < 1

1 if bu + bd ≥ 1

then

⌊k̃u⌋+ ⌊k̃d⌋ =


⌊k̃u + k̃d⌋ if bu + bd < 1

⌊k̃u + k̃d⌋ − 1 if bu + bd ≥ 1

Now that we have this expression, we see that

arg min
ℓ

⌊k̃u⌋+ ⌊k̃d⌋ = arg min
ℓ

⌊k̃u + k̃d⌋

But since

⌊k̃u + k̃d⌋ =

⌊
ℓ
n
X − ℓX̃

Xbau − X̃
+

n−ℓ
n
X − (n− ℓ)X̃

Xbau − X̃

⌋
=

⌊
X − nX̃

Xbau − X̃

⌋

Thus, the location of the second monitor does not change ku + kd.
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The only channel in which location affects welfare then is through the sum

π(XRu) + π(XRd
)

Denote ℓ∗ as the location that maximizes the above sum. Suppose that ℓ∗ is such that

XRu ̸= XRd
. Then this contradicts the definition of ℓ∗ because by shifting some pollution

from the higher XR to the lower XR it would increase the join profit since π() is con-

cave. Thus, the necessary condition for ℓ∗ to be the argmax of the joint profits is that

ℓ∗ : XRu = XRd
.

By definition we have that

XRu =
ℓ

n
X −

⌊
ℓ
n
X − ℓX̃

Xbau − X̃

⌋
Xbau −

(
ℓ−

⌊
ℓ
n
X − ℓX̃

Xbau − X̃

⌋
− 1

)
X̃

XRd
=

n− ℓ

n
X −

⌊
n−ℓ
n
X − (n− ℓ)X̃

Xbau − X̃

⌋
Xbau −

(
n− ℓ−

⌊
n−ℓ
n
X − (n− ℓ)X̃

Xbau − X̃

⌋
− 1

)
X̃

Therefore, the only ℓ that satisfies the necessary condition for maximization is ℓ =
n

2
. By

equations 10 and 11, this is also the location that maximizes total welfare.

Proof of Theorem 0.7. Let m1 < m2. We seek to find the conditions under which kT
m1

> kT
m2

.
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Suppose that it’s true and let m1 = m2 − c.

kT
m1

> kT
m2

⇐⇒ m1k1 > m2k2

⇐⇒ m2k1 − ck1 > m2k2

⇐⇒ m2(k1 − k2)

k1
> c

⇐⇒ k1 − k2
k1

>
m2 −m1

m2

Proof of Corollary 0.8. Equations 13 and 14 imply that

kT
m = m

⌊
Xm − nmX̃

Xbau − X̃

⌋

which we want to compare with equation 15. This comparison of these two values can be

boiled down to comparing

⌊ab⌋ with ⌊a⌋b

for some positive value a and positive integer b. Using Hermite’s identity, it is apparent that

⌊ab⌋ ≥ ⌊a⌋b
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which means that

kT
1 ≥ kT

m ∀m ∈ N

because ⌊mk̃m⌋ =
⌊
m k̃1

m

⌋
= ⌊k̃1⌋.
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